An efficient numerical scheme based on Lucas polynomials for the study of multidimensional Burgers-type equations

نویسندگان

چکیده

Abstract We propose a polynomial-based numerical scheme for solving some important nonlinear partial differential equations (PDEs). In the proposed technique, temporal part is discretized by finite difference method together with ? -weighted scheme. Then, approximation of spatial unknown function and its derivatives, we use mixed approach based on Lucas Fibonacci polynomials. With help these approximations, transform equation to system algebraic equations, which can be easily handled. test performance generalized Burgers–Huxley Burgers–Fisher one- two-dimensional coupled Burgers equations. To compare efficiency accuracy scheme, computed $L_{\infty }$ L? , $L_{2}$ xmlns:mml="http://www.w3.org/1998/Math/MathML">L2 root mean square (RMS) error norms. Computations validate that produces better results than other methods. also discussed confirmed stability technique.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Numerical Scheme for Coupled Nonlinear Burgers’ Equations

In this paper, coupled nonlinear Burgers’ equations are solved through a variety of meshless methods known as multiquadric quasi-interpolation scheme. In this scheme, the extension of univariate quasi-interpolation method is used to approximate the unknown functions and their spatial derivatives and the Taylor series expansion is used to discretize the temporal derivatives. The multiquadric qua...

متن کامل

Numerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order

In this ‎article‎‎, ‎an ‎ap‎plied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of ‎high order ‎Volterra ‎integro-differential‎ equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical ‎illustrations‎ have been ‎solved‎ to ‎assert...

متن کامل

developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”

هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...

15 صفحه اول

An Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme

We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2021

ISSN: ['1687-1839', '1687-1847']

DOI: https://doi.org/10.1186/s13662-020-03160-4